Globus, Nexus, and NT

Ian Foster and Steven Tuecke Argonne National laboratory

http://www.globus.org/

Networked Virtual Supercomputers

- Assemble distributed resources ...
 - High-end computers
 - Information sources
 - Scientific instruments, etc.
- ... and apply to challenging problems
 - Smart instruments
 - Collaborative engineering
 - Data mining
- What role can (NT) clusters play?

Technical Requirements

Resource naming & location Scalable authentication & authorization

Identifying and selecting bitways
Scheduling computers and networks

Integrating resources into computations Configuration

Multiple programming models
Masking latency, maximizing bandwidth

Uniform and efficient access

Software Challenges

- Development of required services
 - Many promising pieces, much missing functionality
- Integration of existing and new services
 - Requires common low-level mechanisms
- Meeting demanding performance requirements
 - Configuration and adaptation are critical
- Evaluation and intercomparison of solutions
 - Requires instrumentation, testbeds, benchmarks

The Configuration Problem

- Heterogeneity demands many choices
 - Selection of resources and networks
 - Configuration of networks (QoS) & devices
 - Communication protocols, security, ...
 - Configuration of computation
- End-to-end management of complex systems
 - Manageable complexity
 - Configuration without omniscience
- Distinguishes us from distributed computing

Components of a Solution

- Toolkit providing low-level mechanisms
 - Encapsulate device-specific mechanisms
 - Control, instrumentation, notification interfaces
 - Permit high-level specification of policy
- Universal and uniform access to up-to-date information on system structure and state
- Autoconfiguration and adaptation mechanisms for individual components
- Integration of diverse higher-level services

Globus Approach

HLL: HPF/MPI (ANL), HPC++ (ISI, Indiana)

APPLES: Application-level scheduling (UCSD)

Qualis: End-to-end QoS mgmt (Aerospace, ISI)

Zipper: Secure communications (ANL)

MPI-IO, ADIO: Parallel I/O (ANL, others)

Truffles: Distributed file system (TIS, UCLA)

Components

I/O Security Scheduling Information

Globus

integration

toolkit

etc.

Communication

Core mechanisms Testbeds

I-WAY (late 95)

GUSTO (96/97)

ESNet? (97)

NSF PACIs (97/98)

Globus Structure

```
HPC++ Legion
MPI AppLeS
Condor Nimrod
etc.
```

other
systems and
services

Globus Services Implementations of specific policies

Resource location

Scheduling

• • •

Globus Core Interfaces to lowlevel mechanisms Nexus comm library

RIO remote I/O MDS info service

Security security issues

• • •

Characteristics of a Globus Infrastructure Component

- Provide common interface to low-level mechanisms
- Permit higher-level components (tools or users) to specify "policy"
- Permit high-performance implementations
- Use information service for configuration

Communications Issues

- Challenges
 - Heterogeneous devices and networks
 - Need for multiple communication methods
 - Support irregular, dynamic program structures
- Approach
 - Common communication infrastructure (Nexus)
 - Separate treatment of policy and mechanism
 - Automatic/manual management of method choices
 - Support wide range of high-level tools

Nexus Applications

Nexus Mechanisms

- Node: locus of computation
- Context : address space (virtual processor)
- Thread: thread of control
- Communication link : uniform naming
- Remote service request : remote invocation

All entities can be dynamically created and destroyed; links can be migrated

Communication Links

Multimethod Communication: Heterogeneous Systems

- Select communication method according to destination
- Example: coupled climate model
 - Ocean, atmos. on separate computers
 - Written entirely in MPI

Scenario	Partitions	Total
All MPL	1	560
TCP+MPL	2	574
All TCP	2	854

= TCP

Multimethod Communication: Security

- Associate security mechanisms with communication link
- Select mechanism according to destination
- Example: coupled climate model

Security	TCP time	MPL time
	(secs/day)	(secs/day)
None	854	574
Coupler	897	590
All	1459	1187

-- = Unsecure

= Secure (DES/ECB)

Component Example: RIO

- Purpose: Support high-speed access from (parallel) programs to remote (parallel) files
- Approach: Use ADIO as interface, implement network
 I/O device support
- Build on Globus communication and information services to guide configuration
- A building block for I/O libraries (e.g., ChemIO, MPI-IO) and file systems

Resource Management Components

Location and Allocation Services

- Low-level services: Resource Manager
 - Determine scheduling characteristics of resource
 - Enquire about availability of specified resources
 - Allocate resources via queue or reservation
 - Support variety of resources and brokers
- Higher-level services: Resource Broker
 - Translate user requirements into resource allocations

Next Steps

- Development/deployment
 - MDS, location/allocation, communication, process management, security, NT
 - Interfaces to AppLeS, LSF, Condor, Nimrod, etc.
- Research
 - Higher-level services & resource aware applications
 - Scalability and performance issues
- Applications
 - Smart instruments, collaborative environments, etc.

Deployment

- GUSTO: A metacomputing testbed
 - Testbed for Globus components and friendly applications
 - April 97 : 4 6 sites within U.S.
 - October 97 : 10 12 sites (some international)
- NSF supercomputer centers: NCSA, SDSC
- DOE sites: Center for Computational Science and Technology, others

Cluster Issues

- Is an NT cluster a reasonable platform for network computing?
- Integrating non-IP cluster communication
- Scheduling integration
- Information services required for clusters
- Clusters with heterogeneous nodes

Globus Summary

- Defined and implemented basic services to support "network supercomputing"
 - Comms., info., security, I/O, sched., etc.
- Demonstrated autoconfiguration in network computing systems: MPI, etc.
- Demonstrated utility in large-scale testbeds
- Next steps: adaptation, integration, applications, larger testbeds